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S.1. INTRODUCTION

THIS MATERIAL SUPPLEMENTS the paper with an analysis of two important is-
sues. First, we provide a treatment of the friendship formation model when
preferences are satiated in the number of friends. We show that our qualita-
tive results still hold in this case and that, in addition, inbreeding homophily
can be generated for all groups, even in the absence of bias in the technology
of the meeting process. This point is of some importance, since it points to
a larger role for choice and preferences in generating the observed patterns of
friendships in U.S. high schools.

Second, we study in detail a model with discrete friendships, for which the
version of the law of large numbers used in the paper with a continuum of
agents no longer applies. For this case, we study the richer strategic framework
that describes the matching process and show that the structure of equilibrium
strategies “replicates” the one we have derived in the continuum case, provid-
ing further justification of our model.

S.2. SATIATED PREFERENCES

We study the endogenous matching model when preferences are satiated in
friendships. Given the assumption of diminishing marginal returns to friends,
satiated preferences are such that the following statements apply:

(i) There exists a “bliss point” (sb� db) such that U(sb�db)≥U(s�d) for all
(s�d).

(ii) For each s′ ≥ 0, there exists d′ ≥ 0 such that Ud(s
′� d)≤ 0 for all d ≥ d′;

for each d′ ≥ 0, there exists s′ ≥ 0 such that Ud(s�d
′)≤ 0 for all s ≥ s′.

The major change in the analysis with satiated preferences is the possibil-
ity that agents optimally reject friendships because of their negative marginal
value. Strategies are, therefore, richer than in the case of nonsatiated prefer-
ences and include four possible actions at each point in time: accept only own
type, accept only different type, accept any type, and stop searching. It is no
longer true, in general, that the probability of finding a friend of different type
who wants to form a link is 1 −q, and we denote such probability by p ≤ 1 −q.

The minimum cost of achieving a point (s�d) is given by (see Figure S.1)

C(s�d)= cmax
[
s

q
�
d

p

]
�
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FIGURE S.1.—Isocost rectangles.

Effectively, one follows a strategy of “Any” until whichever of (s�d) is
reached first, and then continues to search just for the types of friends that
are needed to reach the point. In the continuum, note that the ordering of
whether, for instance, Any is followed first and then “Same” or vice versa no
longer matters. We therefore define the sets

A1 =
{
(s�d) :

s

q
>

d

p

}
�

A2 =
{
(s�d) :

s

q
<

d

p

}
�

A3 =
{
(s�d) :

s

q
= d

p

}
�

Points in A1 are most efficiently reached by a combination of Any and Same
strategies, those in A2 are most efficiently reached by a combination of Any
and “Different” strategies, and those in A3 are most efficiently reached by fol-
lowing only an Any strategy. Note that it is never the case that rational agents
would follow a strategy that includes both Same and Different.

Agents solve the problem

max
(s�d)

U(s�d)−C(s�d)�(S.1)
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If U is strictly quasiconcave, there is a unique cost minimizing point for each
possible level of utility. The following proposition establishes necessary condi-
tions for cost minimizing points to also be net utility maximizers.

PROPOSITION S.1: The solution (s∗� d∗) to (S.1) satisfies the condition

qUs(s
∗� d∗)+pUd(s

∗� d∗)= c�(S.2)

Moreover, conditions (a)–(c) hold:
(a) (s∗� d∗) lies in A1 only if

c

q
=Us(s

∗� d∗)�(S.3)

0 =Ud(s
∗� d∗)�(S.4)

(b) (s∗� d∗) lies in A2 only if

c

p
=Ud(s

∗� d∗)�(S.5)

0 =Us(s
∗� d∗)�(S.6)

(c) (s∗� d∗) lies in A3 only if

Us(s
∗� d∗) > 0�(S.7)

Ud(s
∗� d∗) > 0�(S.8)

PROOF: If (s∗� d∗) lies in A1, then it solves the problem

max
(s�d)

U(s�d)− c

q
s

whose solution trivially requires conditions (S.3) and (S.4). Similar arguments
apply to point (b). As for point (c), the relative maximization problem is

max
s

U

(
s�

p

q
s

)
− c

q
s�

yielding (S.2) as a necessary first-order condition. Note also that for (s∗� d∗) ∈
A3 to be a solution to (S.1), conditions (S.7) and (S.8) must hold. In fact, if
Us(s

∗� d∗) < 0, s∗ > 0, and d∗ > 0, we can decrease s by a small amount ds,
leaving costs unaffected and increasing utility. The same arguments hold if
Ud(s

∗� d∗) < 0. Q.E.D.
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To prepare for the next section in which a concept of steady-state equilibrium
is introduced (a generalization of the one given in the paper),1 we now show
that for all qi and pi, there exists a unique optimal strategy (si� di).

We start by denoting the set of cost minimizing solutions satisfying condi-
tions (S.4) and (S.6) by C1 and C2, respectively. Let C3 denote the set of points
that satisfy condition (S.2). It is useful to derive the slopes of the above curves
using an application of the implicit function theorem.

We say that U(s�d) satisfies the “substitutes” property if Usd < 0. The fol-
lowing inequalities are derived for the case of substitutes:

ds

dd

∣∣∣∣
C1

= −Udd

Usd

< 0�(S.9)

ds

dd

∣∣∣∣
C2

= −Usd

Uss

< 0�(S.10)

ds

dd

∣∣∣∣
C3

= −qUsd +pUdd

qUss +pUsd

< 0�(S.11)

In the next two lemmas and in the resulting proposition, we consider only
the case of substitutes. Moreover, we assume that Usd(s�d) > Udd(s�d) and
Usd(s�d) > Uss(s�d) for all (s�d). This is a standard assumption, which ensures
the quasiconcavity of U when Usd < 0.

LEMMA S.1: Let p> 0 and q > 0. Then

ds

dd

∣∣∣∣
C2

>
ds

dd

∣∣∣∣
C3

>
ds

dd

∣∣∣∣
C1

and

ds

dd

∣∣∣∣
C2

>−1 >
ds

dd

∣∣∣∣
C1

�

LEMMA S.2: Let p > 0 and q > 0. The curves C1 and C3 intersect at most
once. The same holds for the curves C2 and C3. Moreover, denoting by x and y
such intersections, sx < sy and dx > dy .

The arguments to prove Lemma S.1 are mostly graphical. See Figure S.2.
We can now fully characterize optimal solutions to (S.1) for the case of sub-

stitutes.

1Following similar steps as in Appendix A, one could show that our concept of equilibrium can
be obtained as a limit of a well defined matching process in discrete time.
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FIGURE S.2.—The loci C1, C2, and C3.

PROPOSITION S.2: If (s∗� d∗) ∈ A1 satisfies conditions (S.3) and (S.4), then
(s∗� d∗) is the unique solution to problem (S.1). If (s∗� d∗) ∈A2 satisfies conditions
(S.5) and (S.6), then (s∗� d∗) is the unique solution to problem (S.1). Finally, if
(s∗� d∗) ∈ A3 satisfies conditions (S.2), (S.7), and (S.8), then (s∗� d∗) is the unique
solution to problem (S.1).

PROOF: Let (s∗� d∗) ∈ A1 satisfy conditions (S.3) and (S.4). Then by Lem-
ma S.2 (s∗� d∗) is unique and (s∗� d∗)= C1 ∩C3. By Lemma S.1, if (s�d) satisfies
conditions (S.5) and (S.6), then (s�d) /∈ A2. Consider then any point (s�d) ∈
A2. This point is always dominated by the minimum cost point x ∈A3 in the in-
tersection between the indifference curve passing through (s�d) and A3. Also,
let (s�d) ∈ A3 satisfy condition (S.2). It must be that Ud(s�d) < 0, since it lies
on the right of curve C1 on which Ud(s�d) = 0. By Proposition S.1 it cannot
be a solution to (S.1). Using a symmetric argument, it can be shown that if
(s∗� d∗) ∈ A2 satisfies conditions (S.5) and (S.6) then it is the unique solution
to (S.1). Consider finally (s∗� d∗) ∈ A3 that satisfies conditions (S.2), (S.7), and
(S.8). Suppose that (s∗� d∗) is dominated by some point (s�d) ∈ A1. Consider
the optimal point for problem (S.1) in the closure of A1. This point must be a
cost minimizing point (that is, it must lie on C1) and must belong to A3; other-
wise it would satisfy conditions (S.3) and (S.4). However, all points on A3 are
dominated by (s∗� d∗), which implies a contradiction. Q.E.D.
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S.2.1. Steady-State Equilibrium

Our notion of steady-state equilibrium is now modified to account for the
richer set of possible optimal strategies. Given flows N1� � � � �Nn, an equilib-
rium is a collection of (si� di�Mi) for each i (along with indirectly determined
(qi�pi� ti)’s) such that the following equalities hold:

(i) ti = max[ si
qi
� di
pi

].2
(ii) Mi =Niti.

(iii) qi = Mi(si/qi)/ti∑
j Mj

.

(iv) pi =
∑

k �=i Mk(dk/pk)/tk∑
j Mj

.
Equality (i) represents the time that a type i agent needs to spend in the

matching process; (ii) represents the stock of agents of type i who will be in
the matching process in steady state at any time; (iii) represents the relative
probability that a type i agent will find another type i agent (Mi/

∑
j Mj) times

the chance that such a same-type agent will be willing to form a friendship
with i: (si/qi)/ti (note that if si� di ∈ A1, then ti = si/qi and so this second factor
is 1); (iv) represents the probability that a type i agent will find an agent of
a type k �= i (Mk/

∑
j Mj) times the chance that such an agent will be willing to

form a friendship with i ((dk/pk)/tk) and then sums across k.
Let M = ∑

j Mj . Using (ii), we rewrite (iii) and (iv) as follows:
(iii′) qi = Ni(si/qi)

M
.

(iv′) pi =
∑

k �=i Nk(dk/pk)

M
.

We can deduce some constraints on equilibrium.
From (iii′) it follows that

q2
i = Nisi

M
(S.12)

and so (when qj �= 0)

qi

qj

=
√
Nisi

Njsj
�(S.13)

Note that (S.13) implies that in a steady state, if Ni > Nj , then si ≥ sj implies
that qi > qj .

2If pi = 0 or di = 0, then let 0/0 = 0.
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We can also derive conditions for the consistency of cross-type links in equi-
librium. From (iv′), by summing the equation for each pk, where k �= i, we
deduce that for any i,

Nidi

Mpi

=

∑
k �=i

pk − (n− 2)pi

n− 1
=

∑
k

pk − (n− 1)pi

n− 1
�(S.14)

Since the left-hand side is nonnegative, this implies that (when n > 2)

pi ≤

∑
k �=i

pk

n− 2
�(S.15)

Note that (S.14) also implies that(∑
k

pk − (n− 1)pi

)
pi

(∑
k

pk − (n− 1)pj

)
pj

= Nidi

Njdj

�(S.16)

Finally, from (S.12) and (S.14), we get

si

di

= (n− 1)qi∑
k

pk − (n− 1)pi

· qi

pi

�(S.17)

which means that if i’s optimum is in A3, then si/di = qi/pi and so

(si� di) ∈ A3 implies qi =

∑
k

pk − (n− 1)pi

n− 1
�(S.18)

which also can be read as qi + pi = ∑
k pk/(n− 1). Similarly for the case

where i’s optimum is in A1 (that is, si/di > qi/pi), we have that

(si� di) ∈ A1 implies qi >

∑
k

pk − (n− 1)pi

n− 1
�(S.19)

In the case where i’s optimum is in A2,

(si� di) ∈ A2 implies qi <

∑
k

pk − (n− 1)pi

n− 1
�(S.20)
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Next, note that by the definition of pi,

piM =Njdj/pj +
∑
k �=i�j

Nkdk/pk

or

pipjM =Njdj +
∑
k �=i�j

Nkdkpj/pk�

By a similar equation for j, we deduce that

Njdj +
∑
k �=i�j

Nkdkpj/pk =Nidi +
∑
k �=i�j

Nkdkpi/pk�

Thus,

Njdj −Nidi =
∑
k �=i�j

Nkdk(pi −pj)/pk�(S.21)

This implies the following proposition.

PROPOSITION S.3: If n = 2, then N1d1 = N2d2. If n > 2, then Njdj > Nidi if
and only if pi > pj (and dk > 0 for some k �= i� j).

S.2.2. Equilibrium With Two Groups

In this section, we study the simpler case of two groups and analyze the three
main empirical observations outlined in the paper: relative homophily, more
total friendships for larger groups, and inbreeding homophily for all groups.

The next proposition shows that if neither type is in A3, then relative ho-
mophily holds.

PROPOSITION S.4—Relative Homophily: If Ni > Nj and an equilibrium is
interior, then di < dj . Moreover, if s and d are substitutes, and si� di ∈ A1 ∪ A2,
then si > sj .

PROOF: The fact that di < dj follows from Proposition S.3. If si� di ∈ A1,
then Ud(si� di)= 0. Then by the substitutes condition and the fact that di < dj ,
it follows that si > sj or else we would have Ud(sj� dj) < Ud(si� di) = 0, which
cannot be true given that type j is optimizing. If si� di ∈ A2, then Us(si� di)= 0.
Then by the substitutes condition and the fact that di < dj , it follows that si > sj
or else we would have Us(sj� dj) < Us(si� di) = 0, which cannot be true given
that type j is optimizing. Q.E.D.
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We will restrict the analysis to the case in which both types’ strategies are
in A1; that is, s1/d1 > q1/p1 and s2/d2 > q2/p2. This can be easily obtained if
there is a homophilous bliss point (s∗ > 0 and d∗ = 0) and a low cost c, as in
the numerical example we are going to discuss.

PROPOSITION S.5—Larger Groups Make More Friends: Let N1 > N2 and
consider an interior equilibrium such that s1/d1 > q1/p1 and s2/d2 > q2/p2. Then
(s1 + d1) > (s2 + d2)�

PROOF: Given the slope of C1, which is

∂s

∂d

∣∣∣∣
C1

= −Udd

Usd

< −1�

and given the result of Proposition S.4, we conclude that (s1 + d1) > (s2 +
d2). Q.E.D.

The next proposition shows that the larger group always displays inbreed-
ing homophily. Moreover, and differently from the case of nonsatiated prefer-
ences, this can be true also for the smaller group.

PROPOSITION S.6—Inbreeding Homophily for All Groups: Let N1 >N2 and
consider an interior equilibrium such that s1/d1 > q1/p1 and s2/d2 > q2/p2. Then
type 1 always displays inbreeding homophily. Moreover, there exist satiated prefer-
ences for which type 2 also displays inbreeding homophily.

PROOF: Both types display inbreeding homophily if

Hi = si

si + di

> wi = Ni

N1 +N2
�

Note that since Hi > qi for both types, q1 +q2 = 1 (this is because both types
are assumed to be in A1), and w1 +w2 = 1, we have that at least one of the two
types is inbreeding homophilous and possibly both. Note here the difference
with the case of satiated preference, in which Hi = qi, and all types cannot have
inbreeding homophily at the same time.

From Proposition S.3 (N1d1 =N2d2), we have that

w1 = N2(d2/d1)

N2(1 + d2/d1)
= d2

d1 + d2
and w2 = d1

d1 + d2
�

Since

H1 = s1

s1 + d1
and H2 = s2

s2 + d2
�
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we have that H1 > w1 if and only if s1 > d2, as well as H2 > w2 if and only
if s2 > d1. Note that since we have proved that s1 + d1 > s2 + d2, we know
that type 1 must display inbreeding homophily. We are therefore interested
in establishing that condition s2 > d1 can be satisfied. We do this by means of
a specific form of satiated preferences,

U(s�d)= −α(s −M)2 −βd2 − γ(s −M)d�

where (M�0) is the bliss point, with M > 0, and 2α > γ > 0 and 2β > γ are
parameter restrictions. Note that this utility has the substitutes property and
satisfies diminishing marginal returns. It can be shown that for any positive N1

and N2, there is a cost c > 0 for which both groups have optima in A1.3
Steady-state conditions for these preferences are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ui
s = c

qi

�

Ui
d = 0�

N1d1 =N2d2�

qi =
Ni

si

qi

N1
s1

q1
+N2

s2

q2

�

⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−2α(si −M)− γdi = c

qi

�

−2βdi − γ(si −M)= 0�
d1

d2
= N2

N1
�

q1

q2
=

√
N1s1

N2s2
�

⇒

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
4
αβ

γ
− γ

)
di = c

qi

�

q1

q2
=

√
d2s1

d1s2
�

If we divide the first equation for type 1 by the first equation for type 2, and
substitute into the other equation, we obtain

d1

d2
= q2

q1
⇒ d1

d2
=

√
d1s2

d2s1
⇒ s1

d2
= s2

d1
�

This means that type 2 also exhibits inbreeding homophily for any N1 ≥
N2 > 0. Q.E.D.

S.3. DISCRETE FRIENDSHIPS

We study the structure of optimal strategies when agents come in discrete
units. The main difference from the case of a continuum of friends is the pres-

3That is because, as c gets smaller, the C3 curve (characterized by the equation qUs +pUd = c)
gets arbitrarily closer to the bliss point.
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ence of randomness when agents accept any type of friend. In this case, strate-
gies may be contingent on the realized type of the match, and optimal strate-
gies may keep track of all such contingencies. We show in this section that, at
least in the case of homophilous preferences, optimal strategies have a simple
structure, which is similar to the one we would find in the case of a continuum
of friends: agents accept any friend until some threshold level of different-
type friends is achieved, and then only accept same-type friends until they stop
searching.

S.3.1. One Friend

To get an idea of the main forces at work, we start with the simple case where
agents desire at most one friend. Consider a case where U(1�0) > U(0�1) > c,
c > Us(0�1) > Us(1�0), and c > Ud(0�1) > Ud(1�0).4 In this scenario, agents
search for at most one friend and prefer to have a friend of their own type.
There are two things to examine here. First, conditional on searching, will
a given type be willing to form a friendship with an agent of a different type
if he or she happens to meet one or will they only be willing to form a friend-
ship with an agent of their own type? Second, is it worthwhile searching at
all?

Without loss of generality for this case, set U(1�0) = f > U(0�1) = 1 > c.
Starting with the first question, a strategy of only accepting a match with one’s
own type yields an expected payoff to an agent of type i of

Vi(own)= qif − c + (1 − qi)Vi(own)

or

Vi(own)= qif − c

qi

�

An analogous calculation shows that a strategy of accepting a friendship with
any (willing) type yields an expected payoff of

Vi(any)= qif +pi − c

qi +pi

�

Thus, an agent of type i is willing to form a friendship with an agent of a dif-
ferent type if and only if

qi ≥ qif − c�(S.22)

It follows that there are three optimal “one-friend” strategies:

4By Us(s�d) we here mean the difference U(s + 1�d) − U(s�d), and the same for Ud(s�d).
Similarly we can define the second-order direct and cross-differences Uss , Udd , and Usd .
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• Not to search if c ≥ qif +pi.
• To search and accept any friend if qif +pi ≥ c ≥ qi(f − 1).
• To search and only accept own types if qi(f − 1)≥ c.

Here we see some intuitive comparative statics, in line with the result we
found in the analysis with a continuum. Agents with higher levels of pi and qi

will search, while agents with low enough levels will not. Also, agents who have
high enough values of qi will search, but will only form friendships with their
own types. This means that we can find parameter ranges where larger groups
(higher qi’s) are unwilling to form cross-type friendships, while smaller groups
are willing to form cross-group friendships.

S.3.2. Two Friends

Let us now examine a setting where agents are willing to form at most
two friendships. Consider a situation where U(2�0) > U(1�1) > U(0�2), and
Us(si� di) ≤ 0 and Ud(si� di) ≤ 0 when si + di ≥ 2. So, agents value at most two
friends and prefer to form friendships with agents of their own type.

Let us also suppose that qi, pi, and c are such that agents are always willing
to form two friendships. It is clear that in this case, an agent, when searching,
will always be willing to form a friendship with an own type, since the value of
an own-type friendship always dominates the value of a friendship with a dif-
ferent type. The question becomes whether or not an agent is willing to form
friendships with agents of different types.

To characterize the strategies, we start with a simple observation. Strategies
are not affected by a failed meeting, so that if an agent sets with a given strat-
egy and does not form any friendships in a given period, then it is optimal to
still pursue that same strategy starting in the next period. This allows us to
look for optimal strategies of a form that only change contingent on forming
a friendship.

So, the types of strategies that we need to consider can be described by either
being willing to form any friendship available in a given period or being only
willing to form friendships with same types. This leads to six possible strategies,
listed by the strategies followed on the first friend and then the second friend5:

• Same, Same.
• Same, Any.
• Any, Same.
• Any, Any.
• Any, and then Same if first friend is of the same type and Any if first

friend is of a different type.
• Any, and then Any if first friend is of the same type and Same if first

friend is of a different type.

5We do not need to consider strategies of the form Same on the first friend and then contin-
gency afterward since the first friend is obviously of a same type under such a strategy.
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The first thing to note is that the strategies (Same�Any) and (Any�Same)
induce exactly the same distributions over possible friendships. This translates
into a more general result that we discuss in more detail below.

In all of the following analysis, we will make use of the assumptions we used
in the previous section: Uss ≤ Usd < 0 and Udd ≤ Usd . Note that under these
assumption, it does not make sense to follow a strategy of Same if first friend
is of the same type and Any if first friend is of a different type, unless it hap-
pens to be that one is indifferent between these two strategies regardless of
the outcome on the first friendship. This is true since it is the marginal value
of a different type which becomes relatively more valuable if the first friend is
of the same type, and vice versa. This is another more general result that we
discuss below: contingent strategies should move in a direction opposite of the
last friendship formed (so if it is a same friend, then to Any, and if it is a differ-
ent friend, then to Same). When we refer to contingent, we then refer to such
a strategy.

Thus, in looking for an optimal strategy it is enough to consider the following
strategies:

• Same, Same.
• Any, Same.
• Any, Any.
• Any, Contingent.

“Contingent” means following Any if first friend is of the same type and fol-
lowing Same if first friend is of a different type.

Next, from our analysis of the one-friend case, we know that the decision of
whether to search for Any or Same on a second friend depends on the relative
size of c/qi compared to U(2�0) − U(1�1) if the first friend was of the same
type and compared to U(1�1) − U(0�2) if the first friend was of a different
type.

It is clearly possible to have both of these larger than c/qi, both smaller than
c/qi, or the first larger and the second smaller. Thus, conditional on having
followed an Any, strategy on the first friend, it is possible to have Same, Any,
or Contingent be optimal on the second friend. We then need to check whether
Any can be an optimal strategy on the first friend with each of the scenarios in
the second stage.

We now argue that (Any�Same) is never a uniquely optimal strategy. If
(Any�Same) is a better strategy than (Same�Same), then since (Same�Any) is
equivalent to (Any�Same), it is also a better strategy than (Same�Same). This
implies that it is not worthwhile holding out for a same friendship on the sec-
ond friend conditional on the first friend being same. Thus, c/qi > U(2�0) −
U(1�1). Now, for (Any�Same) to be a better strategy than (Any�Contingent),
it has to be that Same is a better strategy than Any contingent on having a same
friend on the first friend. This implies that c/qi < U(2�0)−U(1�1), and so we
have reached a contradiction.
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Thus, there are three possible optimal strategies (outside of cases of indif-
ference):

• Same, Same.
• Any, Contingent.
• Any, Any.

These strategies are optimal according to the following comparisons.6
• (Same�Same) is optimal if U(2�0)−U(1�1)≥ c/qi.
• (Any�Contingent) is optimal if U(1�1) − U(0�2) ≥ c/qi ≥ U(2�0) −

U(1�1).7
• (Any�Any) is optimal if c/qi ≥U(1�1)−U(0�2).

We remark that pi does not enter any of these calculations! This follows
from the fact that the relative calculation is always as to whether or not to
accept a friendship with a different type when it is available in a given match
or to hold out for a friendship with a same type. The probability of matching
with a same type is given by qi.

It follows easily from the above calculations that we can find the following
situations:

• The most populous types only form same-type friendships.
• A middle range of types in terms of population size form first-friend

relationships with any types but second friendships contingently.

6Note that the expected cost of following a strategy where there is a probability p of making
a friend in any given period has a geometric distribution; hence the expected number of periods
until a friendship is formed is 1/p and the anticipated search cost incurred until the friendship is
formed is thus −c/p. The expected payoff to a strategy of (Any�Any) is

p2
i U(0�2)+ 2qipiU(1�1)+ q2

i U(2�0)
(pi + qi)2

− 2c
pi + qi

�(S.23)

The expected payoff to a strategy of (Any�Contingent) is

(p2
i + 2qipi)U(1�1)+ q2

i U(2�0)
(pi + qi)2

(S.24)

− c

(
1

pi + qi

+
(

pi

pi + qi

)
1
qi

+
(

qi

pi + qi

)
1

pi + qi

)
�

The expected payoff to a strategy of (Any�Same) or (Same�Any) is

piU(1�1)+ qiU(2�0)
pi + qi

− c

(
1
qi

+ 1
pi + qi

)
�(S.25)

The expected payoff to a strategy of (Same�Same) is

U(2�0)− 2
c

qi

�(S.26)

One can directly check that (Same�Same) is weakly better than (Any�Contingent) if and only
if U(2�0)−U(1�1) ≥ c/qi . Similarly, (Any�Contingent) is weakly better than (Any�Any) if and
only if U(1�1)−U(0�2) ≥ c/qi . Note also that the first condition implies the second. The claimed
optimality results follow directly.

7This range is nonempty by the assumption that Uss < Usd and Udd < Usd .
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• The least populous types are willing to form any friendship possible on
both friends.
These situations are illustrated in the following example.

EXAMPLE S.1—Three Groups Following Different Strategies: Consider the
case in which U(2�0)= 4, U(1�1)= 3, and U(0�2)= 1. Let c = 0�25. Let q1 =
0�3, q2 = 0�2, and q1 = 0�1. Group one only forms own-type friendships, group 2
forms any friendship on the first friend and follows a contingent strategy on the
second friend, and group 3 forms any friendships on both friends.

S.3.3. Beyond Two Friends: General Characterizations of Steady-State Strategies

For now, let us restrict attention to a case where Us(si� di) ≥ Ud(si� di) for
all si� di. Here, additional same-type friends are always at least as valuable as
different-type friends. Without this condition, strategies where one only con-
siders friendships with different types can be optimal.

Note that once we move beyond two friends, we may have strings of contin-
gencies in a strategy. For instance, it is conceivable to have a strategy where one
follows a strategy of Any on the first friendship, and then follow a strategy of
Same until some stopping point after if the first friend is different, and follow
Any until some stopping point after if the first friend is same. One could also
follow nested sorts of contingent strategies of the form: follow Any on the first
friendship, and then follow Any again as long as only same friendships have
been made unless hitting a stopping point, and once a different friendship has
been made, then follow a strategy of Same until stopping.

While complicated variations are conceivable, optimal strategies follow
some specific forms. A basic intuition is that it is not advantageous to switch
back and forth between contingent and noncontingent strategies, or Any and
Same strategies.

There are a number of intuitions from Section S.3.2 that extend beyond the
two-friend case. First, it is important to observe that we do not need to take
into account how many periods it takes to realize a portion of a given strat-
egy. For instance, if an agent is following a given strategy at the beginning of
a period and does not form a friendship in that period, then it is optimal to
continue following that strategy at the beginning of the next period. Thus, we
can describe a strategy by a tree. The tree is formed of nodes that describe the
strategy that is followed until a new friendship is formed.

So for instance following an Any action, either a d or s friend could be
found. Thus, a node with an Any strategy has two successor nodes. A node
corresponding to a Same action or a Different action is followed by a single
successor node. An action of “Stop” is followed by a terminal node.

Figure S.3 represents a strategy where an agent would like to form at most
three friendships, at most one of which is a different friend. The agent plays the
action Any until a different friend is found and then stops at three friendships,
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FIGURE S.3.—Tree representation of an equilibrium strategy.

but stops once three friends have been found even if they are all of the Same
type.

PROPOSITION S.7: An optimal strategy is always equivalent to a strategy repre-
sented by a tree that has the following properties:

(i) Pick any path in the tree and let η0� � � � �ηK be the nodes along that path
(with η0 being the root node corresponding to the starting action). There exists k′

such that Any is played at all nodes ηk where k< k′ and then either Same is played
at all nonterminal nodes ηk where k≥ k′ or Different is played at all nonterminal
nodes ηk where k≥ k′.

(ii) If Same is played following s, then Different is not played following d.
The following properties hold if same-type friends dominate different-type

friends, so that Us(s�d)≥Ud(s�d) for all (s�d):
(iii) An action of Different is never played.
(iv) Following a node that corresponds to a play of Any, if Same is played at

a successor node, it is only played following the outcome of d. This, together with
(iii), implies that if an action of Any follows a realization of d, then either it also
follows a realization of s or else Stop follows the realization of s.

Thus, when same-type friends dominate different-type friends, an optimal
strategy is always equivalent to a strategy that plays Any until some number
of d friendships have been formed or some limit is hit (that could depend on
the fraction of d’s found so far), and then follow Same thereafter.

PROOF OF PROPOSITION S.7: Consider a tree T and any node η where Same
is played. Create a new tree as follows. Cut the tree at the node η and move the
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subtree that starts from the successor node to η to take the place of η. Next,
replace each terminal node in that subtree with one action of Same and then
replace the terminal node. This leaves the realizations of the strategy com-
pletely unchanged and thus is equivalent. The same is true of Different. So we
can find a tree equivalent to an optimal strategy that has the following prop-
erty:

(i′) Pick any path in the tree and let η0� � � � �ηK be the nodes along that
path (with η0 being the root node corresponding to the starting action). There
exists k′ such that Any is played at all nodes ηk where k < k′ and then either
Same or Different is played at each nonterminal node ηk where k≥ k′.

We then conclude (i) by noting that a strategy of Different and then Same
is dominated by a strategy of Any, and then Different following s and Same
following d.8

Next, note that a strategy of only Differents is more valuable following a real-
ization of s than d; similarly a strategy of only Sames is more valuable following
a realization of d than s (this is because of diminishing marginal returns). Thus,
if Same is chosen over Different after s, it is chosen after d as well.

Point (iii) follows easily from the condition that Us(s�d) ≥ Ud(s�d) for all
(s�d), which implies that a strategy of Any is at least as good as Different.

Having found, for any optimal strategy, an equivalent strategy that has a tree
satisfying (ii) and (iii), we work with this tree in what remains. To prove (iv) we
proceed in steps.

First, consider a node η where Any is played followed by only Same on both
succeeding subtrees. Let s0� d0 be the friend composition at η. Suppose that
x ≥ 1 Sames are played following a realization of s, while y ≥ 1 Sames are
played following a realization of d. Let CS and CA denote the anticipated cost
of finding a friend under a Same and under an Any action, respectively.9 This
implies that Any is at least as good as simply following Same for x + 1 more
friends:

pi

pi + qi

[U(s0 + y�d0 + 1)− yCS](S.27)

+ qi

pi + qi

[U(s0 + x+ 1� d0)− xCS] −CA

≥U(s0 + x+ 1� d0)− (x+ 1)CS�

Alter the strategy as follows. If s is realized after η, then at the next node play
Any, and then conditional on that outcome play, y−1 Sames if d and then x−1
Sames if s. Conditional on s being realized after η, the expected continuation

8Note that if an optimal strategy plays both Different and Same, then it must be that qi > 0
and pi > 0.

9Note that CS = c/qi and CA = c/(qi +pi).
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payoff from following this strategy is

pi

pi + qi

[U(s0 + y�d0 + 1)− (y − 1)CS](S.28)

+ qi

pi + qi

[U(s0 + x+ 1� d0)− (x− 1)CS] −CA�

while the expected continuation payoff from the original strategy is

U(s0 + x+ 1� d0)− xCS�(S.29)

Note that by (S.27) it follows that (S.28) ≥ (S.29). We conclude that we can
find a strategy satisfying (i) and (ii), and such that a node where Any is played
is followed by at most one successor node involving a strategy of Same. Since
Same is more valuable after a realization of a different than of a same friend,
we obtain the first part of (iv). The second part of (iv) is immediate. Q.E.D.
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